VI. APPENDIX
A. Object Pose Predictor Architecture

The architecture of our pose predictor is shown in Fig. 8.
The pose predictor first extracts a 128-dimensional feature
from the history buffer, and then the look-ahead time is
appended to this feature, passed together through another
fully-connected network to get the final predicted pose. We
choose not to use recurrent architectures such as long short-
term memory (LSTM) to achieve faster inference time, such
that we can compute the whole predicted trajectory for
the predictable range in parallel. We also tried a Trans-
former [47] architecture, but it does not outperform the
current version based on fully-connected networks. We reach
the same conclusion as stated in [48], which highlights that
the Transformer architecture may not outperform in time-
series forecasting tasks.

> relative pose
'F Px; Py, Pz @

og, 0y, 0z, 0 .
N R = predicted
S velocity | & P Q |—p relative
~ Uz, Vy, Vz pose
||
[
N [I B |
~

look-ahead time

Fig. 8. Object pose predictor architecture. The sequence of past poses

and velocities is sampled from the past 12 seconds at 16Hz. The first
FC (fully-connected) network extracts a 128-dimensional feature, and the
second FC network generates the predicted pose from the extracted feature
and look-ahead time. All poses are relative to the previous pose.

B. Trajectories and Objects

How the 4 types of trajectories are parameterized and the
set of selected objects are shown in Fig. 9. 6 specifies the
counter-clockwise angle of the trajectory, r is the distance
from the trajectory to the robot arm base, [is the length of
the trajectory (for rectangular and sinusoidal trajectories, [is
the straight distance from start to end), and d € {+1,—1}
indicates the direction of the motion, where +1 means
counter-clockwise and —1 means clockwise. The speed v
of the motion is randomly sampled but remains constant
through an episode.

We select this set of objects to include both concave and
convex shapes and also to ensure that the size of the object
fits in the gripper. The sampling range of each trajectory
parameter is shown in Table II. We design these ranges such
that at least part of the trajectory is reachable for the robot
arm, assuming no obstacles.

Trajectory | [7 (m) 1 (m) d v (cm/s)
Linear [0°, 360°] [0.35, 0.65] 1 {+1,-1} [2, 6]
Sinusoidal | [0°, 360°] [0.35, 0.65] 1 {+1,-1} [2, 6]
Rectangular | [0°, 360°] [0.35, 0.65] 1 {+1,-1} [2, 6]
Circular [0°, 360°] [0.65, 0.9] 1.5 {+1,-1} [5,10]
TABLE II

PARAMETER SAMPLING RANGE FOR EACH CONVEYOR TRAJECTORY.

Fig. 9. Randomized trajectories and selected graspable objects. Top
Row: A bird’s eye view of linear, sinusoidal, rectangular, and circular con-
veyor belt motion generation process. Each random motion is parameterized
by angle 6, distance r, length [, and direction d. The cross indicates the
position of the robot base. The red line shows the motion of the conveyor
belt, with an arrow indicating the direction. The horizontal dashed line at
the robot base indicates the positive z-axis of the world frame. Bottom row:
7 objects from the YCB dataset are selected as the graspable target objects
for our experiments.

C. Justification on Sim2Real Transfer

We are not able to provide real-world experiments. How-
ever, we think that the sim2real gap of this work is minimal,
and the performance gain from the meta-controller will be
consistent regardless of the sim2real gap. There are several
reasons for it. (1) The largest gap when transferring to the
real robot is the vision system that estimates the object poses
and bounding box dimensions. Recent perception systems
such as DOPE [49] and Gen6D [50] can obtain such infor-
mation fast and reliably. We also add significant Gaussian
noises to the poses and bounding box dimensions to account
for such perception errors. Given the same magnitude, pure
random noise is more challenging than noise from realistic
perception systems with fixed observation-to-noise mapping.
(2) Given the estimated poses and bounding box dimensions,
there is no sim2real gap in other components of our pipeline,
such as object pose predictor, grasp planner, motion planner,
and the meta-controller. (3) Our simulated environment is
under realistic timing. Time spent in all submodules is
compensated with the target object motion and we retime
the planned arm motion to make sure it matches the real-
robot speed.

	Introduction
	Related Work
	Method
	Dynamic Grasping Pipeline
	Learning a Meta-controller
	State and Action Space
	Training

	Experiments
	Experimental Setups
	Baselines
	Performance Analysis and Discussion

	Conclusion
	References
	Appendix
	Object Pose Predictor Architecture
	Trajectories and Objects
	Justification on Sim2Real Transfer

